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Invasion and Extinction in the Mean Field
Approximation for a Spatial
Host-Pathogen Model
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We derive the mean field equations of a simple spatial host-pathogen, or preda-
tor-prey, model that has been shown to display interesting evolutionary proper-
ties. We compare these equations, and the equations including pair-correlations,
with the low-density approximations derived by other authors. We study the
process of invasion by a mutant pathogen, both in the mean field and in the pair
approximation, and discuss our results with respect to the spatial model. Both
the mean field and pair correlation approximations do not capture the key
spatial behaviors—the moderation of exploitation due to local extinctions, pre-
venting the pathogen from causing its own extinction. However, the results
provide important hints about the mechanism by which the local extinctions
occur.
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1. INTRODUCTION

The importance of space in ecology, evolution and epidemiology has
become increasingly recognized in recent research. It has become apparent
that inhomogeneities in spatially distributed populations can fundamentally
change the dynamics of these systems.!"> In particular, spatial symmetry
breaking and the resulting patterns of inhomogeneity lead to dynamic
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behaviors that are qualitatively different from aggregate (homogeneous)
models. These changes affect not only our models of the rate of change of
system variables, but also our basic understanding of what is and is not
important in describing these systems.

Space can be taken into account in essentially three different ways:
continuous partial differential equations, patch models and lattice models.
The first class includes reaction-diffusion equations, used to model pigment
patterns in animal skins® and ecological processes.”’ Patch models, or
structured population models, assume an a priori spatial distribution of the
population into clusters, or demes, that weakly interact via migration or
other types of contact. Each cluster is assumed to be uniform. The vast lit-
erature on this subject can be traced from ref. 8. Due to the assumption of
weak interactions, many of the more interesting dynamic spatial effects
were not studied in this context. Finally, lattice models treat space as a
discrete set of sites, or regions, whose states are determined by local
interaction with nearby points. These interactions are generally not limited
to weak interactions, and the class of behaviors that can be studied are
similar to those of partial differential equations. Spatial patterns of inho-
mogeneity may form spontaneously in lattice models, depending on the
specifics of the model and parameters.

A simple lattice host-pathogen or predator-prey model has become a
paradigm for the study of spatially extended dynamics. This model was
first introduced by Tainaka.® In epidemiology, the model was introduced
by Comins et al.'” and further studied in refs. 11-14. In this model, it is
possible for predators or pathogens to overexploit their prey or hosts,
thereby eventually causing their own extinction. However, when predators
or pathogens can mutate, they evolve to moderate values of exploitation of
the prey or hosts. Recent studies have revealed that this occurs because of
the local extinction of overexploitative strains many generations after they
first arise.® The salient features of the model are local reproduction of
both host and pathogen, and the killing off of infected hosts by pathogens.
The model is a probabilistic cellular automaton, in which the state of each
site is updated probabilistically according to the state of nearby sites. The
system is known to exhibit a very rich and complex dynamical behavior.
Some insight in the role of the parameters and global behavior of the
system can be obtained from the mean field approximation. The mean field
equations correspond to the homogeneous version of the model, that is,
when all hosts and pathogens experience the same local environment. This
is generally a very crude approximation, and at least pair correlations must
be taken into account in order to obtain more features of the spatial model.
Still, the mean field provides an important starting point for conceptual as
well as better analytic discussions of spatial effects.
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The mean field equations for the host-pathogen model were first pre-
sented by Rand et al."® (see also refs. 15-17). Corrections due to pair cor-
relations were considered in ref. 16. Satulovsky and Tomé® have also
derived the mean field and pair correlation equations for a similar model.
In this paper we argue that the mean field equations and the pair approx-
imation in refs. 13 and 15-17 are actually only approximations to the
correct equations. In the derivation of these equations it is assumed that
the time interval between updates is very small, so that the discrete time
updates of the cellular automaton can be replaced by continuous time dif-
ferential equations. As we shall discuss in Section 3, without considering
the way discrete transitions are aggregated, there is no unique way of
making this transition. The continuous time limit adopted in this paper
takes into account that the action of one agent, like a susceptible host
replicating into a neighboring site, does interfere with the actions of the
other neighboring agents. As an example, if an agent replicates into a site,
no other neighboring agent can replicate there. When all replications are
counted to determine the rate of population change by replication onto
empty sites from multiple adjacent sites, the interference is significant, and
therefore it is relevant in the continuous time differential equations. In the
derivations of the mean field equations in previous works, refs. 13 and
15-17, these interferences were neglected. As a result, the probability of
infection of a susceptible host by an infected individual is overcounted, as
is the probability of a susceptible host being born on a empty site. Their
equations are strictly valid only in the low density limit and possibly for
small rates of transmissibility of the pathogen and for small birth rates of
susceptible hosts, when these overcountings are not important. We note
that the model in ref. 18 assumes the type of overcounting discussed above
even in the lattice (simulation) version. The mean field and pair approxi-
mation equations derived there are, therefore, consistent and correct,
although the model itself is not very realistic.

A demonstration of the correctness of our equations can be performed
by considering a simple cellular automaton where the lattice sites can be
only either empty or occupied by a host. This is a useful test, because,
unlike for the full host-pathogen model, the mean field is a good approxi-
mation over a wide range of parameters. The results, plotted in Fig. 1,
show that the accuracy of our mean field equation of the average number
of hosts is much superior to that of the approximate equations previously
obtained by others.

In order to further clarify this point we first consider a discrete version
of the mean field limit, without taking the limit of small time interval
between updates. This provides a well defined mean field approximation
and can be compared both to the original cellular automaton and to the
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Fig. 1. Comparison between the average population of hosts (x) for a model of host repro-
duction and death. Reproduction occurs at a rate g and death occurs at the rate u=0.2.
Filled circles show the lattice simulations (thick solid line), squares show the exact mean field
calculations we derive in this paper given by Eq. 30 (solid thin line), and empty circles show
the approximate mean field calculations as reported previously by others and given by
Eq. (31) (dashed line).

continuous time differential equations. We find that the discrete mean field
agrees very well our continuous time mean field equations and not well
with previously derived continuous time ones. In particular, the discrete
and continuum equations give identical results at equilibrium.

The correct continuous time mean field equations for the full host-
pathogen model were recently presented in ref. 19. In this paper we present
a detailed derivation of these equations and compare them with the
approximate ones. Using the new results we consider implications for our
understanding of evolutionary processes in this model. In particular, we
discuss the question of invasion of a population by mutant pathogens.
When mutant types with different transmissibilities can arise in the lattice
model, there is an evolutionarily stable type which cannot be invaded by
types with lower and (sometimes) higher transmissibilities. This problem
was studied in refs. 4, 5, 14, and 20-22 in the context of lattice models and
in refs. 13, 15, and 17 in the mean field limit using their approximate equa-
tions. Here we derive the full mean field and pair approximation limit for
the case of two types of pathogen. We show, as had been already shown
with the approximate equations, that the mean field limit cannot account
for the invasion features observed in the spatial model. Even including
pair correlations, the equations fail to describe the emergence of an
evolutionarily stable pathogen type. However, we show that the dynamics
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in the pair approximation does give us hints about how intermediate-
transmissibility types are resistant to invasion by higher-transmissibility
ones.

The paper is organized as follows: in Section 2 we describe the lattice
model and in Section 3 we derive its master equation. In Section 4 we
obtain the mean field equations for one and two types of pathogen. Section 5
is devoted to the pair approximation for the case of a single type of patho-
gen and Section 6 considers the pair approximation for two pathogens and
the process of invasion. A discussion on the dynamics of invasion in the
pair approximation versus the corresponding behavior in the lattice model
is presented in Section 7, where we also summarize our conclusions.

2. THE MODEL

We consider a two-dimensional spatial lattice with N = N x N sites.
The state of each site can be either empty (0), occupied by a susceptible (S),
or occupied by an infected individual (Z,). Alternately, each cell can be
considered to represent local populations, either absent or at carrying
capacity. At each time step, the susceptible hosts reproduce into each
nearby cell with probability g if that cell is not yet occupied. The probabil-
ity of reproduction is independent for each neighbor. An infected host dies
with probability v, the virulence. Finally an infected host I, causes a
neighboring uninfected host to become infected with probability 7, the
transmissibility. The subscript 7 allows more than one type to be present on
the lattice. For the sake of simplicity we shall re-label the state (S) as (1)
and (7,) as (7).

The state of the system is denoted by ¢ = (6,, 0,,..., o), Where g; is
the state at the ith site. We call w;(o) the transition probability per unit
time of the state at the site i. The transition probabilities are:

1-(1—-g)" if ,=0
w(@)={1—(1—0)" if a,=1 (1)

v if g,=1

where n, =3 ; d(0;,;, 1) is the number of susceptible neighbors to i, and
m; =3 ; 6(0;,;, 7) is the number of infected neighbors to i. The sum over j
runs through all the nearest neighbors. We call { the total number of
nearest neighbors, which is usually taken to be 2 for one-dimensional latti-
ces and 4 for two-dimensional lattices. Note that, since a susceptible cannot
be infected twice, the probability of becoming infected has to be calculated
as “one minus the probability of not becoming infected.” This gives rise to
the term 1 — (1 —7)™. Similarly, an empty site can become occupied only by
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offspring of a single susceptible neighbor host, thus the term 1—(1—g)".
Note also that the transitions between states are being defined as cyclic:
0->1-7t-0.

Allowing for the simultaneous existence of different types of patho-
gens, and mutation between the types, enables the study of evolutionary
dynamics, where different types compete for the same susceptibles. The
transmissibility becomes a quantitative trait of an individual pathogen.
When a pathogen of transmissibility ¢ reproduces, its offspring has proba-
bility u of having transmissibility 7+e. For simplicity we assume that
may take only discrete values 7, = ke, k=1, 2,..., M where M =1/e. The
state occupied by a host infected with pathogen 7, will be labeled (7).

When more than one type of pathogen is present, the transition prob-
ability per unit time of the state at the site i is written as w;.(¢). The pos-
sible (cyclic) transitions are: from (0) to (1), from (1) to (z;) and from (z,)
to (0). The transition probabilities are given by

1—(1—g)™ if 0,=0
0z (0) =4 2, if g,=1 2
v if o,=1 for all £’

where Q, is the probability that susceptible hosts become infected by the
pathogen with transmissibility 7:

Qk=x{gpk_1+§pk+1+(l—ﬂ)pk} (3)
with
Pl 1-TT, 1—1;)™ _ 1T (=)™ @
2il5pa+spia+(A—p)pl 2P
and
pe=1-(1—7)™ )

For @, and 2,, the terms in p, and p,,,; should be discarded and the
factor (1 — u) replaced by (1 —%).

3. MASTER EQUATION FOR THE LATTICE MODEL

Approximate mean field equations for the lattice model with a single
pathogen type can be obtained using simple considerations as follows. The
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only accessible variables are the probabilities of finding a susceptible host,
x, an infected host, y, and an empty site, z=1—x—y. The rate of increase
in the probability of susceptible hosts per generation is assumed propor-
tional to the probability of empty sites z and to the average number of
susceptible hosts neighbors to these empty sites. The constant of propor-
tionality is just the birth rate g. The average number of susceptible hosts
that are neighbors to an empty site is given by the total number of neigh-
bors to the empty site, {, times the probability that a site is occupied by a
susceptible host: {n) = {x. A second contribution to the rate of change in x
comes from susceptible hosts becoming infected. This is proportional to
x and to the average number of infected neighbors to the susceptible
host, {m) ={y. The constant of proportionality is the transmissibility .
Therefore,

d
d—); = gz{x—1x{y. (6)
Similarly
d
d—f =x(y—vy. (7

These equations can be found in refs. 15 and 16 in the context of the same
spatial model and in ref. 18 for a similar spatial predator-prey model. It is
immediately clear that these equations fail to take into account the fact
that a susceptible cannot be infected twice or that an empty site cannot
accommodate more than one offspring (compare with Eq. (1)). These
equations are, therefore, only approximations, possibly valid in the limit of
small birth and transmissibility rates.

One way to correct the overcounting in the probabilities is to realize
that, since {n) = {x and {m) = {y, we may write, according to (1)

%=2[1_(1_g)<n>]_x[1_(1_f)<m>] =Z[1—(1 _g)éx]—x[l—(l—f)éy]
(®)

and
%=x[1—(1—r)<’">]—vy=x[1—(1—f)¢y]—vy- ®)

It might seem that this second alternative is better, since it keeps the form
of the original transition probabilities. We shall see, however, that this is
also incorrect.
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In order to find the correct mean field limit of the spatial model, we
have to derive the master equation for the probability of the system as a
whole. The mean field equations result from approximating all pair (and
higher) correlations by simple products of one site averages.®?® We shall
follow the presentation of ref. 18, generalizing it to include several types of
pathogens.

3.1. Master Equation for Discrete Time Updates

The master equation describes the rate of change in the probability of
finding the system in a particular state as a function of time. The master
equation is usually presented in differential form, where the time interval
between updates is taken to be very small. It is useful, however, to derive
first a discrete version of the master equation, avoiding the uncertainties
related to the passage from discrete to continuous time.

In order to do so we consider a cellular automaton with asynchronous
site updates, where at each time step, only one site, chosen randomly, is
updated. In this case the master equation can be written as

P(o,t+1)=P(a,0)+). T(o; > 0a)—) T(c —>a)), (10)

where o) are states that can make a transition to ¢ by changing only once
the state of a single site, i.e., by making a single internal transition, and o,
are states to which ¢ can change by a making single internal transition.
T(u — v) is the conditional probability of, being in the state u, make a
transition to the state v.

To write down the transition probabilities explicitly we need to find
the states o) and o... We start with o, which we rename as o. These states
are equal to ¢ at all sites except at i. At the site i the state is given by

Ty if g,=0
0 if g,=1 (11
1 if og,=14 for any £'.

o), can go to ¢ by a single transition.
We also rename o as ‘o, also defined as equal to ¢ in all sites except
at i. At i the state is given by

1 if 0,=0
Tx if g,=1 (12)

0 if g,=1 for any k'.
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Note that when o, =0, the state of g} at site i may be 7, for any k',
since all of them can make a transition to 0 with probability 1—(1—g)”.
Therefore we have to sum over k’. However, if 6, = 1, that of ¢} at site i is
1. This state may get infected by any 7,,, and we must restrict k' to the
original value of the state in . Therefore, the index k' in ¢} must be the
same as in g;, so that we return exactly to the same state. The result is:

P(o,1+1) = P(o, t)+§: [T(ck —>0)—T(o > 'o,)] (13)

where, according to Eq. (2),

> P(ay, ) v if 9,=0
T(o,—>0)={ Poi, N[1-(1-)"] if o,=1 (14)
P(oi, 1) @, if o,=1
and
P, n[1-(1-g"]1 if ¢,=0
T(o— ‘o) =< Xp P(o, 1) Qp if o,=1 as)
P(o,t)v if o;,=1.

Eq. (13) can be re-written in a simplified form as

P(o, 1+1) = P(a, z)+’§

i=1

; [P(o}) 0y, (%) — P(0) 0 (0)]  (16)

remembering that the sum over k' is present only in the cases specified by
Egs. (14) and (15), i.e., when the argument of w is 7, in the first term and
when it is 1 in the second term. Eq. (16) is the Master Equation for discrete
time updates.

3.2. Master Equation for Continuous Time Updates

In order to derive a continuum master equation for the lattice model,
we consider the limit where the interval between updates of the system, o,
becomes infinitesimal. The probability that a site changes its state in this
interval becomes likewise small, proportional to d¢. However, there is no
unique way to assign such infinitesimal change of state from a given
discrete update rule. If one considers the simulation process as updates of
the agents, such as a susceptible host, then in a small time step J¢ the
reproductive rate g becomes proportionally small, g 5¢. However, if one
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considers the simulation process as updates of the sites, that might have
multiple agents trying to replicate into them, then what becomes infinite-
simal is the probability of the site changing itself, i.e., G=[1—(1—g)"]
becomes G dt. The first process considers each agent selected at random
and its opportunity to replicate into neighboring cells, allowing this to take
place independent of what others are doing. The second process considers
all processes that could affect a particular site. The former is not really
valid as a model of reality because one cannot ignore what other agents are
doing. If an agent replicates into a site, no other neighboring agent can
replicate there, no matter how small the replicating probability might be. In
other words, the “effective” value of the reproductive rate g d¢r must be
reduced for an agent by the possibility that other agents make their move
before it does. Of course when G becomes small, g becomes small too, since
g=[1—(1—G)""]. This is the strategy behind our continuous time mean
field equations. They coincide with those presented in refs. 15 and 16 only
in the limit of small reproductive rates and transmissibilities.

Therefore, similarly to Eq. (13), in the limit of small J¢, the master
equation can be written as

df’g’ v_ Y T(o; > 0)=Y T —~0a)). a7

Using the same reasoning leading to Eq. (16) this can be written as

FEI_T S 1Ph on @b -P@ ox@). (9

3.3. Averages of State Functions
Given any function of the states, f (o), its ensemble average at time ¢ is
given by
(f(a)) =), P(a,1) f(0). 19

Using the continuous time framework we can differentiate both sides with
respect to ¢ and, using the compact notation of (18), we find

d<f(a)>_ dP(o, t)
dt =2 dt /(@)

=% [z S £(0) P}, 1) @4, (0) = () Plo 1 wikr(cr)]. 20)
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Since we are summing over all states, we can replace g} by ¢ and ¢ by ‘o,
in the first term. We obtain

i)y _ <
dt izl

[2 3 (a0) P0.1) 04(0)~ £(0) P(0.1) 04(0) ]

-21 ; LfCop)—f(0)] 0w (0)> 1)

where again the sum over k£’ exists only when the argument of w is 7, in the
first term and when it is 1 in the second term.

In the discrete time scheme the time derivative has to be replaced by
the difference between the ensemble averages at times ¢+ 1 and ¢. The con-
dition for stationary averages, therefore, is the same for both cases if we use
our version of the continuous time limit.

4. THE MEAN FIELD APPROXIMATION

In this section and in the remainder of the paper we shall consider only the
continuous time limit. The discrete time equations can be obtained by replac-
ing the time derivatives by finite differences of the corresponding quantities.
We emphasize that all discrete stationary calculations will be identical to the
continuous ones if we use our version of the continuous time limit, although
the dynamic approach to equilibrium may be slightly different.

In the case of a single type of pathogen the sum over k' disappears and
the transition probabilities simplify to Eq. (1). To obtain an equation for
the average probability of, say, empty sites, we consider f(g)=d(a;, 0).
Then P,(0, t) = <{d(a;, 0)) is the average probability that site i is in the state
(0) in the time ¢. Similarly we define P,(1, t) for the average probability of
susceptible hosts and P;(z, ¢) for the average probability of infected hosts.
In the approximation where the P’s are independent of the site, they
become the mean field probabilities of each state, which we call x(¢) = P(1, ¢),
y(t) = P(t,t), and z(t) = P(0, t) = 1 —x(¢) — y(¢).

We start with (o) = d(g;, 1). According to Eq. (21), we obtain

dp,(1 il
S Y (SC0) 0,0)-1(@) (@) (2)

n=

Since f("g) differs from f (o) only if n =i, only this term contributes to the
sum. Noticing that 6(‘c, 1) = §(g;, 0) we get

dP(1, 1)
dt

={0(0;, O)[1-(1—-g)"]1=d(;, D[1-(1-7)™1).  (23)
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Similarly we obtain

dP(z, t)
dt

=<6(a;, D[1-(1—1)"]—=6(0;, 7) v). @4

4.1. The Calculation of {5(0o;, 0)[1 - (1 - g)"1)
Expanding the binomial (1 —g)™ we obtain
3

[1-(1=g)"]=gn+m(n—D+5mn =D =2+ (29)

The number of terms in the series is at most {, the total number of neigh-
bors. Using n; =3 ;d(0,,;,1) and defining the correlations P,;(af)=
<6(O-ia (X,) 5(01" ﬁ)>’ Pijk(a’ﬂy) = <§(O-i7 a‘) 5(61‘5 ﬂ) 5(0-]" y)>’ etC., we ﬁnd

@@, 01=(1=9"D =g T 0D |+5] T PsicaOID |

3
g
+§[ Z R‘,i+j,i+k,i+1(0111)]+..._ (26)

jEk#]

As an illustration we calculate explicitly the term proportional to g* in
Appendix A. Approximating the correlation of k sites by the product of the
corresponding one-site correlations and assuming that these are indepen-
dent of the site we get

+%C(C—1)(C—2) P(0) P(1) P(1) P(1) + ---

= x4 S - 2+ 5 L~ DE =D 2+ -
=z[1—(1—gx)‘]. (27
Similarly we find

(g, D[1=(1=)"T) = x[1-(1—7p)“]. (28)
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4.2. Mean Field Equations for one Type of Pathogen
Replacing (27) and (28) into (23) and (24) we obtain

d
d—’t‘ = zh,(gx)—xh,(1y) 29)

and

dy
7 xhy(ty)—vy (30)

where we have defined the auxiliary function
h()=1—(1—a)". 31)

These are the correct mean field equations for the host-pathogen model.

It is instructive to study a specific case to understand that Egs. (29)
and (30) are indeed correct. Assume that the number of nearest neighbors
is { =4 and that the average density of susceptible hosts is x =1/2. Con-
sider an empty site. Then, the probability of having no nearest neighbor
susceptible host to this site is 1/2*. That of having 1 nearest neighbor sus-
ceptible host is 4/2* and also 6/2% 4/2% 1/2* for 2, 3, and 4 nearest
neighbor susceptible hosts respectively. The case of k nearby susceptible
hosts contributes a probability [1—(1—g)*] to the total probability of an
offspring in the empty site. Adding them all together we obtain

FAl=(1-2)°1+4[1-(1-g)'T+6[1—(1—g)*]+4[1-(1-g)’]
+[1-(1-2)"1} =5 [4g+6(2g—g°) +4(3g—3g° +¢°)
+(4g—6g’+4g°—gH]=1-(1-g/2)*

which is indeed the probability predicted by the first term of (29).

4.3. Comparison with the Approximate Equations

We note that both sets of equations derived by simple hand-waving
arguments in Section 3 are wrong, though they can be considered as
approximations to the true equations when gx and 7y are small. Equations (6)
and (7) turn out to be quite accurate for most regions of the g—t param-
eters, whereas (8) and (9) are good only for small gx and ty. The ina-
dequacy of Egs. (8) and (9) is not surprising, since averaging in the expo-
nent is not a good representation of the average of the actual probability
functions over the relevant discrete set of possibilities.
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Before showing a direct comparison between simulations obtained
from the lattice model and the mean field equations for the host-pathogen
model, we illustrate the differences between the exact and approximate
equations with a simple “toy” model. This is a useful test, because in this
model the mean field is a good approximation over a wide range of
parameters. Consider a situation where the lattice sites can be only either
empty or occupied by hosts. Hosts can reproduce into neighboring sites
with probability g and die at a constant rate u. The exact mean field
equation for the populations of hosts x is

dx

=7 = (=) h(gx)—px (32)

whereas the approximate mean field equation is

dx

E:(l—x) Lgx— ux. (33)

Figure 1 shows a comparison between the numerical simulation (with the
probabilistic cellular automaton) and the mean field equations. It shows
the average population of hosts x at equilibrium as a function of g. The
over estimation of the birth rate by the approximate equations is very clear
in this case. The accuracy of the exact equations is also very impressive,
demonstrating the correctness of our formalism. Note that the discrete time
mean field equations we derived would produce results identical to our
exact continuous time equations, since Fig. 1 shows the population at
equilibrium.

Figure 2 shows the comparison between simulations and mean field
equations for the full host-pathogen model for the average populations of
susceptible hosts x and infected hosts y. The birth rate is fixed at g=0.5.
Panels (a) and (b) compare the lattice simulations with the mean field
results for v=0.3 and v=0.5 respectively. For 7 <0.5, the approximate
mean field Eqgs. (6) and (7) (dotted lines) tend to overestimate the number
of infected hosts and underestimate the number of susceptible hosts. The
correct mean field, although still not really close to the lattice results,
pushes the curves in the right direction. The value of t where y reaches its
maximum, for instance, is about 0.55 for v = 0.5, both in the lattice simu-
lation and in the exact mean field calculation. For the approximate mean
field, the maximum happens at a much lower value of 7, at 7 = 0.4.

Also, the mean field equations are nonlinear, both in the population
variables x and y and in the parameters g and 7. The nonlinearity in the
parameters is responsible for the loss of the scaling invariant transformation
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Fig. 2. Comparison between the average populations of susceptible hosts (x) and infected
hosts (y) for the lattice simulations (thicker lines) with exact (thick lines) and approximate
(dashed lines) mean field calculations. The birth rate is fixed at g=0.5. Panels (a) and (b)
compare the lattice simulations with the mean field results for v = 0.3 and v = 0.5 respectively.

studied in ref. 18. Indeed, for the approximate equations, (6) and (7), it is
sufficient to consider g+7+v =1, whereas these parameters are indepen-
dent in the spatial model and in the full mean field equations.

We see that the host-pathogen model is less well described by the mean
field than the toy model previously discussed. In particular, the number of
independent correlations between pairs of sites is larger in the host-patho-
gen model than in the toy model, indicating that the mean field equations
for the former should not be as accurate as for the latter. However, the toy
model helps us understand why the approximate mean field equations are
nearly as good as the exact equations in the host-pathogen model. The
approximate version of Eq. (29) for x overcounts both the reproduction
rate of x and their infection rate by y neighbors. These overcountings par-
tialy cancel, resulting in a smaller error than in the simple case discussed
above.
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4.4. Mean Field Equations for Two Types of Pathogens

Virotic or bacterial infections in real life epidemics are subjected to
mutations. A mutant pathogen may have different transmissibility and
virulence properties, causing its spread to be more or less effective than
that of the resident (original) pathogen. Simulations performed with the
spatial model suggest that pathogens types that propagate too fast usually
kill all the available susceptible hosts in the neighborhood, causing their
own extinction. Considering mutations affecting only the transmissibility
leads in some cases to the appearance of an evolutionarily stable type
which cannot be invaded by either more or less transmissible mutants. The
population of infected individuals stabilizes with a distribution of patho-
gens centered around the evolutionarily stable type. Can this feature be
described within the mean field approximation? The answer, according to
the approximate Eqs. (6) and (7), is no. It can be shown that, in this case, a
mutant pathogen with transmissibility 7’ always invades a resident patho-
gen with transmissibility 7 if 7' > 7. In this section we show that the true
mean field Egs. (29) and (30) leads to a different result: if |t'—7| is small,
both types of pathogens co-exist in the populations. The average number of
infected is y(z') > y(z) if ¢’ > 7.

We shall assume that both the resident and the mutant types have the
same virulence v, but different transmissibility rates, 7; for the resident and
7, for the mutant. There are four one-site variables, z, x, y,, and y,, corre-
sponding to the probabilities of empty sites, susceptible hosts, infected by
the resident pathogen and infected by the mutant pathogen respectively.
Once againz=1—x—y, —y,.

The complication that arises in the case of more than one type of
pathogen is that the transition probability from the state (1) to (z,) or (z,)
becomes even more nonlinear and cumbersome. For the case of two types
of pathogens these probabilities are given by (see Section 2)

P(1 —’71)=X[§P2+<1—g>171]

(4
Pa-n)=z|5n+(1-5) 2 |

where

(o) (o)
2—(1—t)"—(1—-1)™’

(€8)

and p, = 1—(1—1,)". We shall see, nonetheless, that these probabilities can
be taken into account exactly.
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Using the Master Equation (21), we obtain the following differential
equation for x:

dp,(1
P()—<5( - O[1—(1=)"1y—<d(a,, DI1—(1—7,)"(1=17,)" 1) (36)

where n, =3 ; 6(0;,;, 1) and mf=% j 0(0,,, ;) are the number of nearest
neighbors to i that are susceptible hosts and infected hosts with pathogen
7, respectively.

The first term on the right hand side was already calculated in
Eq. (27). To calculate the second term one has to expand the two binomials
and group terms of the same order in 7,. After some algebra we find

dx

a:zhg(gx)—Xh:(JﬁTl +1:72) @7

The equations for y, and y, are obtained from

dP,(z,
P A e

dP(z,
N R

Instead of deriving the equations for y, and y, directly, we shall first
obtain the equation for y =y, +y,, the total number of infected hosts.
Adding the two equations above, several simplifications occur. The terms
proportional to d(a;, 1) become identical to the second term of Eq. (36)
and we obtain

and

dy
a=th(J’171+J’2TZ)_UJ’- (40)

Returning to Egs. (38) and (39) we make the ansatz

(0, 1) 2pe> = 26 (@1 1) pi, (4D
and write
dy,
= nxSl- (l—rzy2)51+x1x< )[1—(1—r1y1)]—vy1 “2)
dy, ~ _n )7
E—Xlxz[1_(1_71y1)c]+X2x<1_5)[1_(1_752)’2)C]_UJ’2- (43)
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Adding (42) and (43) and comparing with (40) we see that y, and y, must
satisfy the relation

K== T+l - (1-0) ] =[1-(1-o —)*] (44)
where we have defined o, = 7,y, and a, = 7,y, to simplify the notation.
x, and y, are functions of a; and «,. Exchanging a; by a, does not

alter the right-hand-side of (44) and implies that y,(a,, a;) = x;(a;, ;).
Therefore, y, can be written in the form

Ko, 05) = Py, o) gloy) (45)

where ¢(a,, 02) = ¢(a,, o) is @ symmetric function. We write ¢ as

(o )’
Lo s (46)

oy, o) = )

where f is another symmetric function. Substituting Egs. (45) and (46) into
(44) and re-arranging the terms we get

{f(o‘b ) g(o)[1—(1 _“1)¢]+(1_“1)¢}
+{f(°‘1,0(2) g(“z)[l_(l_‘xz)c]*‘(l_“2)5}=2- (47)

This equation must hold true for all a; and «,. There are only two possi-
bilities: either each term inside the brackets is equal to 1 or the first term is
equaltol — (1 —a, )¢+ (1 —a,)“andthesecondequaltol — (1 —a; )+ (1 —a,)*.
In appendix B we show that this is indeed true, and that the second choice
leads to an inconsistency. This leaves us with the first possibility:

S oy, ) g(al)[l_(l_al)(] = 1_(1_<"1)¢

48
Sy, 05) g(“z)[l_(l_%)c]=1_(1_“2)C- @)

Therefore f(a, o) g(oy) = f(o1, ;) g(ap) =1, g(oy) = g(o,) = constant
=cand f(o, ®,) =1/c. Finally,

I—(1—7 _TzJ’2)C
2—(1 _lel)c_(l _szz)Z

_ h((flyl +7,3,)
hy(T1y1) +h(729,)

XN=J=)=

(49)
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and Eqgs. (42) and (43) become

dy, _
D= xS+ (125 ) e f-on (50)
dy, _
2= i G n+(1-5) e o (5

4.5. Invasion and Co-Existence

Setting the mutation rate to zero, Egs. (50) and (51) become

dx

dat = zh;(gx) —xh; (1Y, +7,¥,) (52)
dy,

dr _Xth(TlJ’H)_UJ’l (53)
d

=2 = Ty (5,92) vy (54)

The approximate equations, valid if 7,y,, 7,y,, and gx are much
smaller than one, are simply

dx
E=gCZX—CX(ﬁy1 +17,12) (55)
dy
d_tl=CXTlJ’1_UJ’1 (56)
dy
d_t2 ={X1,y, — ;. (57)

Setting x = y, = y, =0 we get the equilibrium solutions. For the case
of the approximate equations there are only two possibilities for 7, # 7,:

5 =0 ) = g (t,—v x v
1= 2= =<
({t, 1,+¢g {t

2 2 2 (58)
_0 g (t—v e v
Y2 5‘51 T,+8 {ty

No co-existence is possible, unless 7, = 7,.
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Unfortunately, it is not possible to solve our mean field equations
analytically to find the stationary solutions. However, we can solve them
approximately: instead of setting 1—(1—71,3,)°~{7,y;, we go one step
further and make 1—(1—1,3,)*~ {7, 3,[1—({—1) 7,9,/2]. In this approx-
imation, Egs. (53) and (54) with y, = y, =0 lead to

x{n[1-C=Duy /2] =v (59

x(n[1-C=D 15y, /2] =v. (60)

Dividing one equation by the other and re-arranging the terms we get

Ty — 7 \?
Y2 = (C—l) 2+y1< > (61)

If 7, =7, we get y, = y,. However, both y, and y, can be non-zero simul-
taneously. This implies co-existence, a feature that cannot be obtained with
the approximate equations. It appears only when the probabilities of infec-
tion are correctly calculated. These probabilities are smaller than those
predicted by the approximate mean field equations. When a small amount
of the mutant pathogen is introduced, it does not spread as effectively as
one would expect, making co-existence possible. The overcount of the
probabilities in the approximate equations rules out this possibility.

From a mathematical point of view, the equilibrium conditions for
Eqgs. (56) and (57) form a homogeneous linear system in y, and y,, and the
non-trivial solution requires 7, = 7,. The nonlinear terms in Egs. (53) and
(54), that correct the overcounting, make the non-trivial solution possible
for 7, # 7,. Since the correction terms are usually small, we expect co-exis-
tence only if 7, —7, is small. And indeed, the numerical simulations show
co-existence only for 4 =7, —7; small. Expanding Eq. (61) to first order in
A gives

24 1 24
= = — 62
V2 i+ <(C—1)r1 y) i3z (62)

where we have used { =4 and discarded y, with respect to 1/37, (typically
y; is small). For 7, close to 7;, the total number of infected y = y, + y, is

given approximately by

g 41,—v

~ . 63
Y 47, 7,+¢g (63)
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When y, = y, and y, = 0, we get invasion (the trivial solution). This gives

A 3g7, 41, —v
'Y 8 14g°

(64)

If 4 < 4, we expect co-existence, otherwise invasion.

Invasion can also be studied with linear stability analysis. Assuming
an initial population at equilibrium, with x, susceptible hosts and y,,
infected by the resident pathogen, with transmissibility 7,, a small amount
of a second pathogen, with transmissibility 7,, is introduced. If the muta-
tion rate is set to zero, the growth rate of the new type is given by

d
A= =0 =ny) =0y, 0 = Loz -0 63)
2

For the approximate mean field equations, x,=v/{r; and A=
v(t, —1;)/7;. This implies that the probability of any pathogen type with a
larger transmissibility than the resident type increases exponentially with
time, leading to invasion. For the full mean field equations, however, that
is not true, since x, # v/{t,. The numerical integration of the equations of
motion reveals that indeed there is no invasion if 7, is slightly larger than
7,. Also if 7, is slightly smaller than 7, co-existence also occurs.

Figure 3 shows an example for g =0.05, v =0.2 and 7, = 0.4. We show
the time evolution of the populations starting from x, = 0.125, y,, = 0.097
and y,, = 0.001. Panel (a) shows y, versus y, and panel (b) x versus y, for
7, = 0.39. The approximate equations lead to the extinction of y,, whereas
the correct mean field equations result in co-existence of the two patho-
gens, y; being larger than y,. Panels (c) and (d) show y, versus y, and x
versus y, respectively for 7, = 0.41. Again, the approximate equations lead
to the extinction of y,, whereas the correct mean field equations result in
co-existence, this time with y, > y,. For these values of the parameters,
Eq. (64) gives 4, = 0.023, against a numerically calculated threshold, using
the full mean field equations, of 0.025.

5. THE PAIR APPROXIMATION FOR A SINGLE PATHOGEN TYPE

The mean field equations can be improved by including pair correla-
tions. This is done by keeping two-site probabilites P;(«f) in the equations
while reducing higher order correlations to at most two-site terms. We do
this reduction according to the truncation scheme in refs. 18 and 24-26.
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Consider a cluster C of n+1 sites consisting of the reference site 7 plus
a surrounding cluster R of n neighbors, n <{. The probability of such a
cluster, 2(C), can be approximated by a composition of probabilities of
subclusters of size 2. We first write #(C) = 2(i) (R |i). Then, the condi-
tional probability 2(R|i) is approximated by the product II; r 2(j|i),
where j labels single sites in R:

y(c)=~@(1)»@(R|l)zQ(l)n g)(]|1)=?(l)1_[ 2(ji)

jeR jeR y(l) (66)

where 2(ji) is the probability of the pair (ij).

5.1. Dynamic Equations

For the three possible states per site, (0), (1), and (7), there are six two-
site correlations. Since 3 ; P(ij) = P(i), only three of them are independent.
We call the independent correlations u = P(10), r = P(1t), and w = P(07).
The other three are given by ¢g=P(00)=z—u—w, p=P(11)=x—r—u,
and s = P(tt) = y—r—w, with z=1—x—y. The five independent variables
are, therefore, x, y, u, r, and w.

To write down the equation for x in the pair approximation, we follow
the steps leading to Egs. (23), (25), and (26). The reference site in Eq. (26)
is 0, =(0). According to (66), the term 3, ...; P 4} i+ i+:(0111), for
instance, is approximated by

S PrsiersnO1LD) 2 £(¢ — 1) —2) PAD 2UY) P0)

6
A P(0) P(0) 7

The analogue of the mean field average, Eq. (27), is, therefore,

(0, O[1-(1-)"T>

N e P(10) P(10)
~ ch(Ol)“‘E {¢-n W
e P(10) P(10) P(10)
5 D=2 =t

= Cu/z+ 5 L= D w45 L= DE =D w2+ -

=z[1—(1—gu/2)]. (63)
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After a similar manipulation of the term involving 7 we find

dx

i zh,(gu/z)—xh,(tr [ x) (69)

and

dy _

== xh(zr/x)*—vy. (70)

The equations for u, r, and w can be obtained in a similar fashion. The
result is

d
_u= (g—u) hg_l(gu/z)+vr—uh5_1(rr/x)—gu[1—hg_l(gu/z)] (71)

dt
di
d_;= (p—r)h_y(zr/x)—vr—w h,_(gu/z)—tr[1—h,_(zr/x)] (72)
c(z’i_v: =uh,_,(tr/x)+v(s—w)—w h,_,(gu/z). (73)

5.2. Comparison with the Approximate Equations

Similar to what happens in the mean field limit, Eqgs. (69)—(73) reduce
to those in ref. 18 in the limit of small gu/z and 7r/x. Perhaps the most
striking qualitative difference between our equations and the approximate
set in ref. 18 is the existence of limit cycle solutions in the latter for a much
larger range of parameters than in the former. An exploration of the
parameter space indicates limit cycles occur only for very small virulences
and also small g and 7.

Figure 4 shows examples of the different behaviors obtained from the
exact and approximate equations. We have fixed v = 0.1 and initial condi-
tions x(0) = y(0) =0.25, u(0) =r(0) =w(0) =0.1. The panels show the
time evolution of the number of susceptible, x, versus the number of
infected, y, for (a) g=7=0.2; (b) g=7t=0.4; (c) g=7=0.6; and (d) g =
7=0.8. In Fig. 4a both curves are stable focuses. As g and 7 increase, in
Fig. 4b, the differences start to become apparent. In Fig. 4c both curves are
still focuses, but the approximate curve oscillates much faster than the
exact one. Finally, in Fig. 4d the approximate curve is a limit cycle,
whereas the exact is still a focus. Notice that the amplitude of oscillations
in the limit cycle is quite large, about 0.3 in the infected and 0.15 in the
susceptible densities.
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Co-existence and invasion in the mean field approximations. Thick lines correspond

to the full mean field equations and thin lines to the approximate equations. Panels (a) and (b)
show the co-existence of the invading and resident pathogens in the case 7, = 0.4 (resident)
and 7, = 0.39 (invading). Part (a) shows y, versus y, and (b) y, versus x. Panels (c) and (d)
show similar plots for 7, = 0.41. The approximate equations lead to the complete dominance
of the more transmissible type. Panels (¢) and (f) are similar to (a) and (b), but with 7, = 0.35.
In this case the more transmissible type dominates over the less transmissible in both the

approximate and full mean field equations.
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Fig. 4. Comparison between exact mean field including pair correlations (thick lines) and
approximate mean field with pair correlations (thin lines). Panels (a) to (d) show the time
evolution of the number of susceptibles, x, versus the number of infected, y, for v =0.1 and
(@) g=7t=0.2;(b)g=71=04; (c) g=7=0.6; and (d) g = 7 = 0.8. The initial conditions for all
panels are x(0) = y(0) = 0.25, u(0) = r(0) = w(0) =0.1.

We remark that the spatial model in ref. 18 does show limit cycle
oscillations in accordance with the predictions of the approximate equa-
tions. However, that model is different from ours and from that in ref. 13
exactly because it overcounts the probabilities of infection and of birth, as
discussed earlier.

Figure 5 shows the same lattice simulations displayed in Fig. 2, this
time compared against the mean field equations including pair correlations,
both exact and approximate. The inclusion of pair correlations represents a
great improvement with respect to the bare mean field and the differences
between exact and approximate equations become less important. The
approximate results still tend to overestimate slightly the number of
infected hosts. For v =0.3, the agreement between the lattice and exact
mean field calculations for the number of susceptible hosts (panel a) is
extremely good. Surprisingly, the approximated mean field gives better
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Fig. 5. Comparison between the average populations of susceptible hosts (x) and infected
hosts (y) for the lattice simulations (thicker lines) with the exact (thick lines) and approximate
(dashed lines) mean field calculations including pair correlations. The birth rate is g = 0.5 and
the virulence is v = 0.3 in panel (a) and v = 0.5 in panel (b).

results for v = 0.5 (panel b). In any case, we do not expect the mean field
results to reproduce exactly the lattice calculations. Further improvement
would require the inclusion of higher order correlations.

6. THE DYNAMICS OF INVASION IN THE PAIR APPROXIVIATION

In this section we go back to the problem of invasion of an endemic
population by a mutant pathogen of different transmissibility. In the
spatial version of the model it is known that the system may evolve spon-
taneously towards an evolutionarily stable pathogen type that cannot be
invaded even by more transmissible ones.” The basic reason for the
appearance of this evolutionarily stable type of intermediate transmissi-
bility lies in the self-organized spatial structure of the population. Hosts
and pathogens are distributed patchily. Mutant pathogens can arise that
spread more quickly than susceptible hosts are replenished, but these
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pathogens cause the extinction of the host and themselves only locally.
Can the dynamics in the pair approximation account for this spatial
phenomenon?

In order to investigate this possibility we assume once again that both
the resident and the mutant pathogens have the same virulence v, but dif-
ferent transmissibility rates: 7, for the resident and 7, for the mutant. There
are four one-site variables, z, x, y, and y,, and 10 two-site variables:
u= PQ0), r, = P(17y), r, = P(17,), w, = P(01,), w, = P(0t,), g = P(00),
p=P(lg), s, = P(t,1,), s, = P(1,7,), and s;, = P(7,7,). Of these fourteen
variables, only nine are independent. We choose them to be x, y;, y,,
u, ry, r,, W, w,, and s;,. The other five are related to them by

gq=z—u—w;,—w,
P=X—U—r —r,

(74)
S =1 =W I —Sp

Sy = Yo =Wy =1, =S

Using the same type of considerations presented in Section 4.3 we obtain
the following set of differential equations:

dx

Z:zhg(gu/Z)—th((Tlh+T2r2)/x)

dﬂ:fx /—‘h(rr/x)+ 1-4 he(ziry/x) p—vy
dt 2 2 2) 1
d

= (q=w h_y(gu/z)—gul1—h,_(gu/2)]

_“hc—l((flrl +1215) [ x) +0(ry +717)

dr _

d_tl_)(uphz 1(Tzrz/x)+)(<1_—>l7hc (T, /%)
-W hg—l(gu/z)_flrl[l_hg—l((flrl +72”2)/x)]
—-n h¢—1((71r1 +Tzr2)/x))_vr1

dw _

d_tl XE“hc 1(Tzrz/x)+l<l__>uhc (T /)

+0(sy 481, —wy)—wy hy_(gu/z)
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7(1-£ )\,
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Fig. 6. Co-existence in the pair approximation. The initial populations are x,=0.125,
Y10 =0.097, and y,, =0.001. Panels (a) and (b) show the process of invasion of a resident
pathogen with 7, = 0.4 by a small amount of a less transmissible pathogen with 7, = 0.39. Part
(a) shows y, versus y, and (b) y, versus x. Panels (c) and (d) show similar plots for the case
7, = 0.41. The final state shows co-existence in both cases.
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The equations for y,, r, and w, can be obtained by exchanging the sub-
indexes 1 and 2 in the equations for y,, r,, and w, respectively.

Figure 6 shows the time evolution of x, y; and y, for the same
parameters as in Fig. 3, ie., g=0.05, v=0.2, and 7, =0.4. The initial
conditions are x, = 0.125, y,, =0.097, and y,, = 0.001. Panels (a) and (b)
show y, versus y, and x versus y, respectively for 7, = 0.39. Panels (c) and
(d) show y, versus y, and x versus y, for 7, =0.41. Comparing these
results with those in Fig. 3, we see that the final equilibrium state of the
populations is very similar. In particular, the co-existence of the two types
of pathogen persists in the pair approximation. The main difference is the
approach to equilibrium: the stable node type of approach in Figs. 3b and
3d is replaced by a stable focus in Figs. 6b and 6d, promoting oscillations
of quite large amplitudes. Also, the equilibrium value of x changes consid-
erably, going from about 0.13 in the mean field approximation to about
0.21 in the pair approximation.
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Fig. 7. Pair approximation versus lattice model. The initial population has equal amounts of
infected hosts: x, = 0.125, y,, = yy, = 0.049, 7, = 0.4, and 7, = 0.41 Parts (a) and (b) show y,
versus y, and y, versus x for the pair approximation. Panels (c) and (d) show the same quan-
tities computed with the lattice model.
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Figure 7 shows a comparison with the lattice model. The parameters
are the same as in Figs. 5c and 5d, but y, and y, start off with equal
amounts: y;, = ¥, = 0.049. The qualitative resemblance between the pair
approximation, panels (a) and (b), and the lattice calculations, panels (c)
and (d), is very good. The number of infected individuals, however, is
almost three times smaller in the lattice calculation. Also, the population of
y, eventually die in the lattice model, although it takes about 8000 genera-
tions.

7. DISCUSSION AND CONCLUSIONS

In this work we presented a derivation of mean field equations of a
well known host-pathogen model, taking fully into account the fact that a
susceptible host cannot become infected twice and that an empty site can
accommodate only one offspring. In the context of predator-prey models
this limitation implies that a prey cannot be eaten twice by predators. The
consequences of including this feature, usually present in spatial models
(see however ref. 18), in the mean field equations, are of both qualitative
and quantitative natures. On the qualitative side, the equations become
nonlinear in g and 7, losing the scaling invariance that allows one to con-
sider only g+7+v = 1."® The latter approximation is valid only for small
g and 7, where the chances of a susceptible host being infected twice can be
neglected. The approximate equations lead to complete invasion if a small
amount of a more transmissible mutant pathogen is introduced in the resi-
dent population, whereas the full mean field equations lead to co-existence
if |t, —7,| is sufficiently small. Invasion happens only if |t, —7,| is larger
than a threshold that depends on ;.

When pair correlations are taken into account, we found that the
approximate equations present limit cycles in a much larger range of
parameters than the true mean field equations. Once again, when the
process of invasion is studied (see Fig. 6), we find co-existence of similar
types if |7, —7,| is small. However, the more transmissible pathogen type
still wins over any less transmissible ones, in the sense that either the less
transmissible type goes extinct, or its average number is always smaller
than the mutant invader. The emergence of an intermediate-transmissibility
evolutionarily stable type is not observed even in the pair approximation.
This result requires either higher order correlations or more direct repre-
sentation of the spatial structure of the system. Numerical simulations of
the spatial model show that high-transmissibility types go extinct only
locally, due to the patchiness of the population. They cause the extinction
of hosts available to them in a local patch, thus causing their own extinc-
tion, but not that of other types. Patchiness is essential, since this prevents



Invasion and Extinction in the Mean Field 1447

the spreading of the pathogen to the rest of the population before its death.
In a continuous model, even with pair correlations, patches cannot be
taken into account, and the more transmissible type ends up wining over
the less transmissible.

However, the oscillatory approach to equilibrium revealed by the pair
approximation does give us a clue to understand how the evolutionarily
stable type appears in the spatial model. In Fig. 8 we show y, versus y, for
g=0.05 v=0.2, and 7, =1,+0.05 for 7, =0.2, 0.3, and 0.5. Although
invasion occurs in all cases, the higher the value of z,, the closer the popu-
lation of infected hosts gets to extinction. Denote by ¢, the time when this
near-extinction occurs. If we assume that the initial equilibrium population,
infected by the resident pathogen alone, is structured in patches, those
patches receiving the mutant type are indeed likely to go extinct at t =¢,. If
the patches are very large, Fig. 8 shows that the number of infected rises
again after ¢, leading to invasion by the more transmissible type. However,
if the patches are finite, the population of infected may die. We can esti-
mate the minimum size of these patches so that extinction can be pre-
vented. If n, is the total number of sites in the patch and y; in,» 2 min are the
values assumed by y, and y, at ¢ =¢,, then the actual number of individ-
uals (sites) infected by the resident and the mutant pathogen types at ¢, is
M, Yimn and n, y, ., respectively. When this number goes below 1 there is
less than one infected site in the whole patch, and the corresponding path-
ogen goes extinct. For 7, = 0.2 the resident type disappears if 7, is less than
100, whereas the mutant type disappears only if the patch falls below 45

0.20

0.15 +

0.10 |

2

0.05

0.00 T T
0.00 0.05 0.10 0.15

Y

Fig. 8. Invasion in the pair approximation for g=0.05, v=0.2, and 7, =7+0.05. The
curves show the time evolution for 7, = 0.2 (thin), 0.3 (thicker), and 0.5 (thickest). The initial
conditions are x =0.28, y, =0.11, and y, =0.001. The larger the value of 7, the closer to
extinction the population gets.
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sites. Typical patches observed in numerical simulations are larger than
this, implying that invasion is indeed expected. For 7, = 0.5 extinction of
both resident and mutant pathogens is prevented only if patches are larger
than about 450. However, for 7, = 0.7, the mutant pathogen with 7, = 0.75,
is more likely to go extinct than the resident. If patches are larger than
about 780 the resident pathogen survives, whereas the mutant type
disappears unless patches are larger than 8§90.

In summary, spatial structure is essential for the emergence of an
evolutionarily stable pathogen. In the spatial model, the populations orga-
nize themselves spontaneously into dynamical patches. The mean field
approximation is a limit of infinitely large populations, where patches do
not form. In this limit, even including pair correlations, any small amount
of a more rapidly transmitting pathogen lead to its invasion over the resi-
dent type. However, for large transmissibilities, invasion occurs through a
process that leads first to ‘near-extinction’. If the actual size of the system,
or patch where the mutant first appear, is sufficiently small, extinction does
happen for pathogens of large transmissibility, stopping invasion and
leading naturally to the survival of an intermediate type.

APPENDIX A: CALCULATION OF THE MEAN FIELD EQUATIONS

In this appendix we illustrate the calculation of the mean field limit by
computing terms proportional to g* in Egs. (23)-(25). Explicitly, we
calculate

d(a;, 0) m(n, — 1)(n, —2)y = <J(a;, 0)(n; —3n; +2n;)) (A1)

where n; =3’ ; 6(0;,;, 1) is the number of susceptible hosts that are nearest
neighbors of i. The first term on the right side, proportional to 7}, is

Y. €0(01,0) (045, 1) 80114, 1) 30140, 1))

i k1

= Z {d(a;, 0) 5(0'i+j, 1) 9(0ik5 1) 601405 1))

jEk#l

+ Z 3¢(a;, 0) 6(Ji+j9 D) 6(0144> 1))

j#k

+). <8(0;, 0) 8(a74 55 1)) (A2)
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The right hand side of this equation has three contributions. The first
accounts for the cases where all three susceptible neighbors occupy a dif-
ferent site. If two of the j, k, [ indices are the same, then there are only two
susceptible neighbors. The factor 3 takes care of the three possibilities in
which this might happen: j =k, k=1, and j=1. The last term accounts for
the case where all three indices are the same. In terms of cluster probabilities
we have

<5(0i90)n?>= Z Pi,i+j,i+k,i+l(0111)+z 3Pi,i+j,i+k(011)+z Pi,i+j(01)
j#k J

={((—=1)((—2) P(0111)+3{((—1) P(011)+(P(01)
={({=1D(—=2) P(0) P(1)’+3L({—1) P(0) P(1)*+{P(0) P(1)
={{-D(=2) zx*+3{(({—1) zx”+{zx (A3)

where we have first assumed the probabilities to be independent of the site
and then approximated the probability of a cluster by the product of the
probabilities of each site.

The second and third terms on the right side of Eq. (A1), proportional
to n? and to n, respectively, are calculated analogously and the result is

{8(a;,0) 3n2) =3L(—1) zx* 4 3zx, (A4)
{d(o;,0)2n; > =2{zx. (AS)

When Egs. (A3)-(AS) are substituted back into Eq. (A1), several terms
cancel and we get simply

<d(a3, 0) my(n; — 1)(n; —2)> = L({ —1)({ —2) zx? (A6)

which is exactly the term proportional to g3/3! in Eq. (27).

APPENDIX B: THE CALCULATION OF x; AND ¥,

In Section 4.3 we noted that Eq. (47) has two possible solutions, one
of them used in the text. Here we consider the general solution of (47),
show that there are indeed only two possibilities and that only the one
considered in Section 4.3 is consistent with the original Egs. (38) and (39).

Equation (47) has the form F(x, y)+ F(y, x) =2. Writing F(x, y) =
14+ G(x, y), then G has to be anti-symmetric, i.e., G(x, y) =—G(y, x).
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Making the anti-symmetry explicit we write F(x, y) = 1 +A(x, y)—h(y, x).
Therefore, the most general solution of (47) is
S, 05) g(a)[1=(1 =) T+ (1 —o)* = 1+ h(ay, o) =y, ;)

(B1)
S, ) glop)[1—(1 _“2)C] +(1 _“2)C = 1+h(,, o) —h(oy, ).

Passing the second term on the left side of each of these equations to the

right and dividing one by the other we get

g(oy) 1_(1_0‘1)4_ 1+ 7oy, ) = Ao, ) —(1—a;)°
g(ay) 1_(1_°‘2)C_ 1+h(o, a;) —h(ay, O‘z)_(l_az)c'

(B2)

The left side of (B2) is a quotient of the same function calculated at «,
and a,. The right side must, therefore, also be such a quotient. There are
three ways in which this may happens: (a) A(o;, ) =0, (b) Aoy, o) =
h(a,, o), and () A(o;, &) = A(o;) = (1—a,)°. The first two cases lead to
the situation explored in Section 4.3, i.e., g(o;) =c¢, f(a;, 0,) =1/c. The
third leads to

S oy, ) g(“l)[l_(l_“1)C]+(1_“1)(= 1_(1_“2)Z+(1_°‘1)C

S(ay, ) glap)[1—(1 _“2)4]4‘(1_“2){ =1-(1 _0‘1)c+(1 _“2)(' ®3)

Solving for f(oy, a,) g(oy) and f(e, a,) g(a,) and dividing one equation
by the other we find

g)=[1-(1-0)]7? (B4)

and f(a,, ) =[1—(1—0a,)*][1—=(1—a,)]. This gives

C1=(l=0)f\ [1—(1—a —,)]
= <1—(1—a1)< )2—(1—%):—(1—«2%

(1= =o)"\ [1-(1—a;—a,)"]
X2 = <1—(1—a2)< >2—(1—cx1)f—(1—<xz)c'

(BS)

Now we show that these results are inconsistent: in the limit of small
7, and t,, y goes to 1. Therefore, in this limit, both y, and y, should go
to 1. However, from the expressions above, y; — 7,/7; and y, — 7, /17,.
This possibility is therefore ruled out and only the one explored in Section 4.3
is valid.
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